The structure and dipole moment of globular proteins in solution and crystalline states: Use of NMR and X-ray databases for the numerical calculation of dipole moment

Biopolymers ◽  
2001 ◽  
Vol 58 (4) ◽  
pp. 398-409 ◽  
Author(s):  
Shiro Takashima
2006 ◽  
Vol 324-325 ◽  
pp. 307-310
Author(s):  
De Ming Zhang ◽  
Gui Qing Chen ◽  
Chun Mei Zhang ◽  
Jie Cai Han

The TiAl-based alloys sheet with 150 mm × 100 mm × 0.4 mm was fabricated successfully by using EB-PVD method. The fracture morphology and residual stresses of the sheet were analyzed by SEM, numerical calculation and X-ray stress analyzer. The results indicate that before stripping, the depositional layers have a higher compressive stress, and the substrate has a very lower tensile stress. For the isolated TiAl-based alloys sheet, the microstructure of as-deposited sheet is columnar crystal, and the residual stresses distribution on the free surface has a trend that its magnitude decreased gradually from center to edges. After vacuum annealing at 1273 K for 16 h, the columnar crystal transforms into the equiaxed, the residual stresses on the free surface are eliminated ultimately, and the fracture of the material is diverted from the manner of intergranular fracture to the mixed manner of intergranular fracture with cleavage fracture.


Author(s):  
S.J. Opella ◽  
L.E. Chirlian

Structural biology relies on detailed descriptions of the three-dimensional structures of peptides, proteins, and other biopolymers to explain the form and function of biological systems ranging in complexity from individual molecules to entire organisms. NMR spectroscopy and X-ray crystallography, in combination with several types of calculations, provide the required structural information. In recent years, the structures of several hundred proteins have been determined by one or both of these experimental methods. However, since the protein molecules must either reorient rapidly in samples for multidimensional solution NMR spectroscopy or form high quality single crystals in samples for X-ray crystallography, nearly all of the structures determined up to now have been of the soluble, globular proteins that are found in the cytoplasm and periplasmof cells and fortuitously have these favorable properties. Since only a minority of biological properties are expressed by globular proteins, and proteins, in general, have evolved in order to express specific functions rather than act as samples for experimental studies, there are other classes of proteins whose structures are currently unknown but are of keen interest in structural biology. More than half of all proteins appear to be associated with membranes, and many cellular functions are expressed by proteins in other types of supramolecular complexes with nucleic acids, carbohydrates, or other proteins. The interest in the structures of membrane proteins, structural proteins, and proteins in complexes provides many opportunities for the further development and application of NMR spectroscopy. Our understanding of polypeptides associated with lipids in membranes, in particular, is primitive, especially compared to that for globular proteins. This is largely a consequence of the experimental difficulties encountered in their study by conventional NMR and X-ray approaches. Fortunately, the principal features of two major classes of membrane proteins have been identified from studies of several tractable examples. Bacteriorhodopsin (Henderson et al., 1990), the subunits of the photosynthetic reaction center (Deisenhofer et al., 1985), and filamentous bacteriophage coat proteins (Shon et al., 1991; McDonnell et al., 1993) have all been shown to have long transmembrane hydrophobic helices, shorter amphipathic bridging helices in the plane of the bilayers, both structured and mobile loops connecting the helices, and mobile N- and C-terminal regions.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 99139-99148 ◽  
Author(s):  
Soma Adhikari ◽  
Tanusree Kar ◽  
Saikat Kumar Seth

A new NLO material namely di-valine maleic (VM) was synthesized and characterized by X-ray diffraction analysis. The SHG efficiency of VM was investigated and dipole moment, polarizability, first order hyperpolarizability were calculated by DFT method.


1989 ◽  
Vol 44 (5) ◽  
pp. 575-581 ◽  
Author(s):  
Giuliano Bandoli ◽  
Umberto Casellato ◽  
Mario Gleria ◽  
Antonio Grassi ◽  
Enzo Montoneri ◽  
...  

The crystal and molecular structure of [NP(OC10H7)2]3 was determined by X-ray analysis.The dipole moments of this compound and of the hexa(phenoxo)cyclotriphosphazatrienes of formula [NP(OC6H3XX′Y)2]3 (X = X′ = H, Y = p-Br; X = m-CH3,. X′ = H. Y = p-Cl; X = X′ = m-CH3, Y = p-Cl; X = X′ = m-CH3, Y = H; X = X′ = H, Y = p-CH(CH3)2; X = X′ = H, Y = p-C(CH3)3) were measured in benzene at 25°C. Crystals of [NP(OC10H7)2]3 are monoclinic with unit cell dimensions a = 24.870(15), b = 7.712(8), c = 27.687(14) Å, β = 115.85(7)°; space group P21/c. The structure was refined to an agreement factor of 0.09. The phosphazene ring deviates (max. deviation 17°) from planarity. and mean distances (A) and angles (°) are P-N 1.58(1). P-O 1.58(1), O-C 1.41(2); P-N-P 120(1), N-P-N 119(1), P-O-C 124(2). The conformations of the naphthyloxo groups at P(2) and P(3) are similar, and different from the group at P(1).Dipole moment analysis showed that the solid state conformation changes in the solution state. The measured value was in agreement with a symmetric conformation in which at the O-P-O plane each naphthyloxo group is rotated by ca. 40-50° from the anti-coplanar arrangement relative to this plane. The dipole moment data for the p-substituted phenoxo derivatives agree with such a conformation, but the analysis of the dipole moment values of phosphazenes having phenoxo groups bearing more than one substituent group and p-CH(CH3)2 substituent failed to do so due to the inherent limitations of the method.


1993 ◽  
Vol 48 (1-2) ◽  
pp. 99-104 ◽  
Author(s):  
R. Destro ◽  
F. Merati

Abstract A total of about 37 000 diffracted intensities has been measured at 20 K for a spherical single crystal of citrinin. Using a multipole formalism to interpret the X-ray data, maps of the charge density and of its Laplacian, as well as for the electrostatic potential have been derived. A value of 7(2) D has been obtained for the magnitude of the molecular dipole moment. A study of the electric field gradient (EFG) at the nuclei has yielded the atomic quadrupole coupling constants (QCC) and asymmetry parameters (η). A topological analysis of the charge density has been performed to characterize the intramolecular covalent and hydrogen bonds.


2017 ◽  
Vol 72 (1) ◽  
pp. 17-23
Author(s):  
Hartmut Jungclas ◽  
Viacheslav V. Komarov ◽  
Anna M. Popova ◽  
Lothar Schmidt

AbstractA method is presented to analyse the interaction energies in a nanocluster, which is consisting of three neutral molecules bound by non-covalent long range Van der Waals forces. One of the molecules (M0) in the nanocluster has a permanent dipole moment, whereas the two other molecules (M1 and M2) are non-polar. Analytical expressions are obtained for the numerical calculation of the dispersion and induction energies of the molecules in the considered nanocluster. The repulsive forces at short intermolecular distances are taken into account by introduction of damping functions. Dispersion and induction energies are calculated for a nanocluster with a definite geometry, in which the polar molecule M0 is a linear hydrocarbon molecule C5H10 and M1 and M2 are pyrene molecules. The calculations are done for fixed distances between the two pyrene molecules. The results show that the induction energies in the considered three-molecular nanocluster are comparable with the dispersion energies. Furthermore, the sum of induction energies in the substructure (M0, M1) of the considered nanocluster is much higher than the sum of induction energies in a two-molecular nanocluster with similar molecules (M0, M1) because of the absence of an electrostatic field in the latter case. This effect can be explained by the essential intermolecular induction in the three-molecular nanocluster.


Sign in / Sign up

Export Citation Format

Share Document